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ABSTRACT

Reducing the degrees of freedom of building models significantly reduces computational
costs in time-consuming structural engineering problems, such as dynamic analysis,
nonlinear analysis, or the optimal design of structural systems. In this study, the Finite
Element (FE) model of a 20-story benchmark steel building with numerous degrees of
freedom (DoF) is simplified to a 20-degree-of-freedom linear shear-type building. First, a
preliminary linear shear-type model was derived by estimating the story stiffness so that the
fundamental frequency matches that of the FE model. Then, an optimization problem is
formulated and solved using a Genetic Algorithm (GA) combined with a weighted-sum
method to achieve greater accuracy at higher frequencies in the preliminary model. Two
objective functions were established and assessed for the optimization problem: one is the
difference in frequencies between the FE model and the preliminary model with equal
weighting, and the other is the first objective function improved with the modal participation
percent weighting. The stiffness of each story in the preliminary model is selected as the
design variable in both optimization problems. Finally, these optimized models are evaluated
against the FE model using frequencies and dynamic time-history responses. The model
derived from the weighted objective function demonstrates acceptable accuracy compared to
its FE model in frequency and time-history analysis. It can be used for dynamic analysis and
other structural and earthquake engineering purposes.
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1. INTRODUCTION

Engineering structures are being increasingly constructed on a larger scale, resulting in
heightened structural complexity and more stringent design specifications. Various
methodologies have been employed for analysis and design to address these evolving
demands. This analysis involves the computation of displacements, deformations, and
internal stresses within the structure over a specified time frame under defined dynamic
loading conditions. Accordingly, the availability of reliable dynamic analysis tools is critical
throughout the structural design process [1]. Dynamic analysis may be performed
analytically for simple structural systems subjected to well-defined loading conditions.
However, advanced computational approaches have become indispensable for more intricate
structures and complex loading scenarios. The introduction of the Finite Element (FE)
method [2] marked a paradigm shift in computational dynamic analysis. FE-based
techniques are fundamental tools for structural analysis, design, and control applications.

Nevertheless, increasing accuracy in such methods comes at the expense of significant
modeling complexity and elevated computational demands [3]. FE models often comprise
hundreds of thousands of degrees of freedom (DoF), making the computation of dynamic
responses extremely time-consuming and computationally expensive. When multiple design
configurations and loading conditions must be considered, conducting comprehensive
dynamic analyses within acceptable time constraints often becomes infeasible [4]. Thus,
structural engineers must strike a balance between two competing objectives: achieving
modeling accuracy and precision while mitigating time, cost, and computational burden.

Model Order Reduction (MOR) techniques offer an effective and practical strategy for
approximating the original model with a substantially lower order. In essence, these methods
produce a Reduced-Order Model (ROM) that can replicate the behavior of large-scale
dynamic systems. This reduction leads to notable decreases in computation time, cost, and
effort while preserving the accuracy of analytical results [5]. Given the widespread use of FE
analysis in evaluating and designing structural systems, integrating MOR techniques has
become increasingly essential in this domain. Reducing DoF in engineering structures serves
a range of objectives, including seismic performance assessment, seismic demand estimation,
structural health monitoring, damage detection and evaluation, and control system
development. Structures such as buildings typically possess many DoF and are commonly
simplified into reduced-order representations, such as single-degree-of-freedom (SDoF) or
shear-type models.

Reducing DoF through mass and stiffness matrices condensation was introduced in 1965
[6]. Since then, numerous studies have investigated the use of ROMs as alternatives to full-
scale FE models. One study implemented ROM updating iteratively to reduce the mass and
stiffness matrices of a 40-story shear-type building, maintaining an acceptable level of
accuracy consistently [7]. Another work presented a simplified approach for the preliminary
design of structural dampers by approximating 3-, 9-, and 20-story benchmark steel
buildings into shear-type models [8]. An iterative reduction method was also proposed to
reduce 6- and 12-story concrete buildings into SDoF models [9]. A separate study simplified
a 9-story benchmark steel building to an equivalent linear shear-type model by minimizing
discrepancies in natural frequencies and mode shapes between the FE model and the ROM
[10].
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Further research introduced a method to reduce the DoF of high-rise shear-type structures,
specifically 40- and 60-story models, by condensing them into 10- and 15-story equivalents
[11]. Another approach demonstrated the simplification of a 20-story building using a
generalized procedure tailored for large-scale structures [12]. A foundational analytical
formulation was later developed for estimating high-rise buildings' natural frequencies and
mode shapes during the early design stages, reducing each floor's DoF to three [13]. A
matrix-based analytical strategy was also proposed for friction-damped systems. DoFs were
categorized into primary and subsidiary sets, with frictional elements modeled using four
DoFs, resulting in condensed primary matrices [14]. In seismic risk analysis, a practical
method was presented that reduces both the DoF of the FE model and the number of
required nonlinear time history analyses [15]. Lastly, a heuristic algorithm was introduced to
efficiently derive the mass and stiffness matrices and calculate natural frequencies with
minimal input data, offering considerable time savings over traditional FE approaches [16].

In this study, an optimal linear shear-type model of a 20-story benchmark building is
developed based on the work of Ohotori et al. [17], which exhibits high accuracy. The
process begins with constructing a preliminary linear shear-type model by estimating the
story stiffness values of each story; however, this preliminary model exhibits significant
discrepancies compared to the FE model. To address this, the stiffness coefficient is
calibrated such that the fundamental frequency of the preliminary model aligns with that of
the FE counterpart.

An optimization problem is formulated using a weighted sum approach to further
enhance accuracy. Two objective functions are introduced to minimize frequency deviations
between the preliminary and FE model: one uses equal weighting, and the other employs
weighting based on modal participation percentages. The design variables are the story
stiffness values, with the search domain defined as [2/3k, 4/3k], where k denotes the
stiffness of each story in the preliminary model. Upon solving the optimization problem for
both objective functions, optimized story stiffness values are obtained, which are then used
to construct optimized shear-type models. These optimized models are then evaluated with
the FE model based on frequencies and dynamic time-history response.

The floor masses are identical to those used by Ohotori et al., and Rayleigh damping is
applied with a 2% damping ratio for the first and fifth modes. For validation through time-
history analysis, both the optimized and FE models are subjected to the same input
excitations from four benchmark ground motions: two far-field records (El Centro and
Hachinohe) and two near-field records (Kobe and Northridge). The models' responses are
compared in terms of Peak and Root-Mean-Square (RMS) displacement, velocity, and
absolute acceleration values at the roof level.

2. STRUCTURE

2.1. Description of Case Study

This study utilizes the 20-story benchmark building, initially developed for the SAC
Phase II Steel Project. Although never built, the structure was designed in compliance with
seismic codes and serves as a representative high-rise building typical of those in Los
Angeles, California. It was chosen as a benchmark case in SAC research to facilitate
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consistent and comparative evaluation of structural performance [17]. Detailed
specifications of the structure are provided in [18]. The FE model of the benchmark building
used in this study is based on the version of Farzam [19], which achieves significant
accuracy compared to the model presented by Ohtori et al. Figure 1 illustrates the schematic
layout, plan view, and connection details of the 20-story building, along with the
specifications for the beams and columns.

2.2. Preliminary Shear-Type Model

A ROM is constructed as a linear shear-type model to reduce the number of DoF of the
FE model. In this reduction, the original 20-story FE model, initially comprising 378 DoF, is
reduced into a 20-DoF shear-type model. This is accomplished by assuming each floor
behaves as a rigid diaphragm, with all horizontal displacements concentrated into a single
DoF per floor. Masses are lumped at each floor level, resulting in a diagonal mass matrix.
Story stiffness values are computed for each floor by aggregating the stiffness contributions
of all beams and columns on that floor. Since the structural model assumes linear behavior,
the superposition principle applies, allowing stiffnesses to be summed directly. With both
mass and stiffness matrices defined, the damping matrix is also derived accordingly. Figure
2 presents a generalized N-story shear-type model under seismic excitation.

To estimate story stiffness in moment-resisting frames, a simplified method based on
engineering judgment is proposed in [8] for developing linear shear-type models of
benchmark buildings. In such frames, lateral stiffness can be approximated by relating
lateral force to the corresponding lateral displacement.

The total lateral displacement combines column and beam deformations for structures
designed with strong columns and weak beams, with approximate contributions of 40% and
60%, respectively. Accordingly, the story stiffness can be estimated using the following
Equation:

K= > #8EL O

3
columns h

In Eq. (1), E denotes the modulus of elasticity of the columns, Ic is the moment of inertia
of the column cross-section, and h represents the story height. The 20-story benchmark
structure is a moment-resisting frame system based on a strong-column/weak-beam design
philosophy. Thus, Eq. (1) is employed to compute the lateral stiffness at each story.
However, using a coefficient of 4.8 in Eq. (1) leads to a noticeable mismatch between the
first frequency of the shear-type model and that of the FE model. Since accurately matching
the first frequency is crucial for developing a reliable preliminary model, the coefficient was
explicitly adjusted for the 20-story structure. An adjusted coefficient of 2.168 was adopted,
resulting in an exact alignment between the first frequencies of the preliminary and the FE
models.

A closer initial match between the preliminary and FE model, particularly in the first
frequency, reduces the computational effort required by the Genetic Algorithm during
optimization.
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Figure 1: 20-story benchmark building north—south moment-resisting frame
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Figure 2: Sketch of an N-story shear-type model under earthquake excitation
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3. GENETIC OPTIMIZATION ALGORITHM

Mathematical programming and metaheuristics are popular methods for optimizing
problems. Mathematical programming offers fast convergence and high accuracy. However,
their reliance on gradients and suitable starting points has led them to adopt metaheuristic
algorithms. These algorithms explore and exploit solutions to find global or near-global
optima, offering reasonable solutions promptly, even if they are not always absolute optima
[20]. These algorithms are suitable for problems such as structural design, where the
objective function and constraints can be complex, multivariable, and multi-objective [21].
Metaheuristic algorithms commonly used for structural optimization include Charged
System Search (CSS), Ray Optimization (RO), Colliding Bodies Optimization (CBO),
Genetic Algorithm (GA), and Magnetic Charged System Search (MCSS) [22].

Genetic Algorithms (GAs) are versatile search techniques widely used to solve complex
optimization problems. Their adaptability makes them especially suitable for addressing
various real-world engineering challenges. Since their introduction in the early 1980s, GAs
have been the subject of extensive research and development across numerous disciplines. In
structural engineering, GAs have demonstrated strong performance in optimizing various
design and analysis tasks [23]. Rooted in the theory of evolution introduced by Charles
Darwin [24], GAs were first formalized by Holland in 1975, with significant contributions
and enhancements later provided by researchers like Goldberg [25]. It should be noted that
these algorithms are presented solely as mathematical tools. Their detailed characteristics,
mechanisms, and implementation aspects are not discussed here. For a more comprehensive
study of these algorithms in civil engineering, the reader is referred to [26].

4. MATHEMATICAL FORMULATION

To evaluate a structure's response to seismic excitation, it is essential to formulate the
governing equations that describe its dynamic behavior. These equations provide the
foundation for calculating the time-history response, with displacement being the most
critical output in dynamic analysis. For a system with » DoF, the equation of motion under
earthquake excitation is given by [27]:

M% +Cx +Kx =—M T'xg )

Here, M, C, and K represent the structure's mass, damping, and stiffness matrices of size
nxn. The vector x contains the displacement values for each DoF, while Xg denotes the
ground acceleration. The vector I' (of size nx1) defines how the ground motion influences
each DoF. Solving this equation yields the structural time history responses.

5. DEFINITION OF OPTIMIZATION PROBLEM

An optimization problem is formulated to identify a linear shear-type model of the
benchmark building that closely approximates the dynamic characteristics of the FE model.
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A GA combined with a weighted sum method is employed to solve this optimization
problem. In this approach, multiple objective functions are combined into a single scalar
function using weighting coefficients, where each coefficient reflects the relative importance
of its corresponding objective. Objectives considered more critical are assigned larger
weights [28]. The objective function for this problem is defined as follows:

f(X) = 3w/, (x) 3)

i=1

In this optimization problem, the design variables are the story stiffnesses. The optimal
stiffness for each story is determined by minimizing the defined objective function across
the search space. The problem is unconstrained, and the objective function is specifically
formulated to minimize the frequency difference between the preliminary model and the FE
model. Because achieving close agreement in the lower modes, especially the first mode, is
essential, the corresponding objective terms are assigned larger weights. Two weighting
strategies are employed to construct the objective function. In the first approach, all modes
are assigned uniform weights, treating all frequency discrepancies equally. In the second
approach, the weighting is based on the modal participation percent derived from the FE
model, giving more weight to modes that contribute more significantly to the structural
response. This ensures that the optimization prioritizes alignment in the most dynamically
influential modes. Lower mode numbers are assigned greater weights in the corresponding
objective function, as they certainly have a more significant impact on the structural
response.

The model obtained using the first objective function is referred to as model 1, while the
one resulting from the second objective function is referred to as model 2. The search space
for each story's stiffness is defined within the range [2/3 k, 4/3 k], where k represents the
initial stiffness of that story in the preliminary shear-type model. Two optimized shear-type
models are developed by solving the optimization problem under both weighting strategies.
These models are subsequently compared to the FE model in terms of frequencies and time-
history responses to determine the most accurate model. The story masses in the optimized
models are identical to those used by Ohtori et al. The damping matrix is constructed using
Rayleigh damping, with a 2% damping ratio assigned to the first and fifth modes.

6. RESULTS ANALYSIS AND COMPARISON

6.1 Frequency Analysis

In model 1, where the objective function applies equal weighting, the discrepancies of all
frequencies relative to their counterparts in the FE model are reduced uniformly. In contrast,
for model 2, where modal participation percent weights are applied to the objective function,
the primary frequencies exhibit fewer discrepancies compared to the frequencies of the FE
model. Table 1 presents the first five frequencies, comparing them with their respective
values in the FE model.
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Table 1: Comparison of frequencies between optimized and FE models

Frequency (Hz)
Model Error (%) Optimum FE No.Mode

1.976 0.258 0.253 1

6.128 0.674 0.718 2

Model 1 8.818 1.127 1.236 3
10.269 1.564 1.743 4

12.090 2.014 2.291 5

1.581 0.257 0.253 1

0 0.718 0.718 2

Model 2 0.161 1.234 1.236 3
0 1.743 1.743 4

2.662 2.230 2.291 5

Model 2 is undoubtedly the optimal choice. Models 1 and 2 are compared in terms of
frequency with the FE and the preliminary model, as shown in Figure 3 and Figure 4 for the
first five frequencies. The optimized model 2 achieves a 1.581% discrepancy for the first
frequency, zero for the second, 0.161% for the third, zero for the fourth, and 2.662% for the
fifth, demonstrating greater accuracy than the optimized model 1. Model 2 surpasses the
preliminary model and model 1 in accuracy.
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Figure 3: Comparison of frequencies between optimized model 1, the FE model, and the
preliminary shear-type model

Figure 5 and Figure 6 illustrate the average absolute discrepancy across all modes during
the optimization process and the convergence of preliminary model frequencies to the FE
model frequencies for optimized models. In the upper figures, the vertical axis represents the
percentage, while the horizontal axis denotes the number of analyses. The green curve
indicates a trend in the average absolute discrepancy across all modes throughout the
optimization process. The lower figures show the comparison of frequencies between the FE
model and the optimized models for the first five frequencies throughout the optimization
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process. Across various analyses, the frequencies of the preliminary model rapidly converge
to those of the FE model, indicating both a highly accurate preliminary model and an
improvement in its accuracy as the optimization progresses, especially in model 2.
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Figure 5: Iteration history of the optimization process in the optimized model 1

Although model 2, due to its weighted objective function that assigns higher weights to
the lower modes and consequently achieves greater accuracy in these modes, reaches an
average absolute discrepancy percentage of 0.0233 during the optimization process, model 1,
with uniform weighting, reaches a discrepancy of 8.193.



536 M. Fahimi Farzam and M. Salehi

0.032
0.031
0.030
= 009
S
< o028
o
&0 0,027
S 006
8 o
< 0.025
0.024
0.023

0.02 I I I I I
0 50 100 150 200 250 300

I L

Model 2

=== FE

I
n
1

)

Frequencies (Hz)

e
n
1

=]

] ] ]
0 50 100 150 200 250 300
Number of Analysis

Figure 6: Iteration history of the optimization process in the optimized model 2

To further evaluate the effectiveness of the optimization process, the mode shapes of the
optimized models 1 and 2 were compared with those of the FE model. The comparison
revealed that the mode shapes of both optimized models closely align with those of the FE
model, demonstrating the validity of the reduced-order representations. Moreover, the mode
shapes of models 1 and 2 are almost identical, indicating that both weighting strategies yield
comparable deformation patterns, despite differences in frequency accuracy. A more
detailed examination shows that for the first three modes, the mode shapes obtained from
model 2 are more accurate and closer to those of the FE model. In contrast, for the higher
modes (i.e., modes 4 through 20), model 1 performs slightly better than model 2, with only
minor differences observed. Notably, the first three modes collectively contribute 95.3% to
the overall structural response, making their accurate representation particularly crucial.
Figure 7 illustrates the first five mode shapes of all models, highlighting the strong
agreement achieved through the optimization process.

6.2. Time-history analysis

This section analyzes the time-history responses of optimized models 1 and 2. The FE
and optimized models are subjected to four benchmark earthquake excitations: two far-field
records (EI Centro and Hachinohe) and two near-field records (Kobe and Northridge). Their
time-history response discrepancies are evaluated and compared. For this purpose, a time-
history response has been obtained by subtracting the time-history response of the FE model
from that of the optimized model. Subsequently, the resulting time-history response Peak
and RMS were compared. The model with lower values is considered more optimal and
accurate. This comparison approach is applied to roof responses, including displacement,
velocity, and absolute acceleration, which are analyzed, with the results shown in Table 2.
Since the Peak and RMS values of the resulting time-history responses for model 2 are lower,
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model 2 shows fewer discrepancies from the FE model and therefore demonstrates higher
accuracy than model 1.

Mode 1 Mode 2
2 0 T T T T

— [ F
——m Model |
Model 2

Story Level

I 21«05 0 05 1 -1 050 05 1 -1 =050 05 1 -1 050 05 1
Figure 7: Comparison of the first five mode shapes of the optimized models with the FE model

The results reveal that the minor discrepancies in both Peak and RMS occur for
displacement. In contrast, the most significant discrepancies are observed in absolute
acceleration, particularly under the Kobe and Northridge earthquakes. The large discrepancy
in Peak response is due to the rapid and intense oscillation in the absolute acceleration
response curve, with slight misalignment in time between the FE and optimized models.

Table 2. Statistical comparison of response discrepancies between optimized models of the 9-
story building to the FE model

Model Model 1 Model 2

Statistical Statistical
Earthquake Response Type Peak RMS Peak RMS
Displacement(m) 0.155 0.054 0.083 0.037
El Centro Velocity(m/s) 0.716 0.202 0.238 0.070
Abs. Acceleration(m/s?) 5.536 1.314 2.885 0.419
Displacement(m) 0.078 0.033 0.046 0.024
Hachinohe Velocity(m/s) 0.491 0.121 0.171 0.048
Abs. Acceleration(m/s?) 4.172 0.860 1.820 0.345
Displacement(m) 0.447 0.176 0.224 0.114
Kobe Velocity(m/s) 2.386 0.587 0.636 0.213
Abs. Acceleration(m/s?) 21.99 3.212 8.154 1.124
Displacement(m) 0.569 0.203 0.245 0.129
Northridge Velocity(m/s) 1.995 0.623 0.660 0.225

Abs. Acceleration(m/s?) 12.99 2.764 6.428 0.838
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The Peak responses in the FE and optimized models do not coincide, resulting in a slight
delay and contributing to more significant Peak discrepancies in absolute acceleration at the
roof story. For example, under the Kobe earthquake, the Peak absolute acceleration in the FE
model is 16.44 m/s?, and the RMS is 2.538 m/s?. In contrast, in model 1, the peak is 13.45
m/s?, with a difference of 2.99 m/s?, and the RMS is 2.246 m/s?, with a difference of 0.292
m/s?. The peak and RMS discrepancies in response to the proposed comparison approach are
21.99 m/s? and 3.212 m/s?, respectively. If the comparison had been limited to evaluating the
differences in Peak and RMS values without utilizing the proposed comparison approach,
achieving accurate results from the time-history analysis regarding the precision of the
optimized models would not have been possible.

Figure 8 presents the roof time-history responses of the optimized models and the FE
model under the El Centro earthquake for up to 15 seconds. The time-history responses,
including displacement, velocity, and absolute acceleration, are evaluated. Among these,
both optimized models exhibit the highest agreement with the FE model in displacement and
the least agreement in absolute acceleration. This discrepancy in acceleration is primarily
attributed to the rapid and intense oscillation in the absolute acceleration response curve.
Notably, model 2 demonstrates significantly better alignment and fewer discrepancies from
the FE model and therefore demonstrates higher accuracy than model 1.
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Figure 8: Comparison of roof time-history responses between the FE model and optimized
models under the El Centro earthquake for up to 15 seconds
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Figure 9: (continued)

7. CONCLUSION

This article addresses the reduction of degrees of freedom in the 20-story benchmark
building to reduce computational time, cost, and effort. An optimized linear shear-type
model was developed for this building using a genetic algorithm, exhibiting high accuracy
compared to the FE model. Initially, a preliminary linear shear-type model was created by
adjusting the coefficient in the stiffness equation, ensuring that the fundamental frequency
matched that of the FE model. An optimization problem is defined to enhance the accuracy
of the preliminary model, which is solved using a weighted sum approach. The design
variables were the story stiffnesses of the preliminary model. Two objective functions were
defined: one minimizes the difference between the frequencies of the FE model and the
preliminary model with equal weighting, and the other uses modal participation percent
weighting. By solving the optimization problem, the optimal stiffness for each story was
determined according to the defined objective functions within the search space. The floor
masses are identical to those used by Ohotori et al., and Rayleigh damping is applied with a
2% damping ratio for the first and fifth modes. The model obtained using the first objective
function is referred to as model 1, while the one resulting from the second objective function
is referred to as model 2.

The Frequency comparison between the FE and the optimized models showed that model
2 demonstrated significantly higher accuracy than model 1, indicating that the optimization
process improved the accuracy of the preliminary model. By comparing the mode shapes of
models 1 and 2 with those of the FE model, it was found that model 2 had slightly more
minor discrepancies than model 1 in the first three modes relative to the FE model.

For time history analysis, the FE and optimized models were subjected to four benchmark
earthquake excitations, and the displacement, velocity, and absolute acceleration responses
at the roof story were compared. Peak and RMS differences in these responses, as evaluated
by the proposed comparison approach, showed that model 2 had significantly fewer
discrepancies than model 1. The model 2, presented in this article, closely represents the FE
model. Model 2 can be used for dynamic analysis, control, and other structural and
earthquake engineering purposes.
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