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ABSTRACT

Optimization has become increasingly significant and applicable in resolving numerous
engineering challenges, particularly in the structural engineering field. As computer science
has advanced, various population-based optimization algorithms have been developed to
address these challenges. These methods are favored by most researchers because of the
difficulty of calculations in classical optimization methods and achieving ideal solutions in a
shorter time in metaheuristic technique methods. Recently, there has been a growing interest
in optimizing truss structures. This interest stems from the widespread utilization of truss
structures, which are known for their uncomplicated design and quick analysis process. In
this paper, the weight of the truss, the cross-sectional area of the members as discrete
variables, and the coordinates of the truss nodes as continuous variables are optimized using
the HGPG algorithm, which is a combination of three metaheuristic algorithms, including
the Gravity Search Algorithm (GSA), Particle Swarm Optimization (PSO), and Gray Wolf
Optimization (GWO). The presented formulation aims to improve the weaknesses of these
methods while preserving their strengths. In this research, 15, 18, 25, and 47-member trusses
were utilized to show the efficiency of the HGPG method, so the weight of these examples
was optimized while their constraints such as stress limitations, displacement constraints,
and Euler buckling were considered. The proposed HGPG algorithm operates in discrete and
continuous modes to optimize the size and geometric configuration of truss structures,
allowing for comprehensive structural optimization. The numerical results show the suitable
performance of this process.
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1. INTRODUCTION

Finding a quick, short, and economical way to achieve the best results is the aim of
optimization. It is a fundamental concept that is widely used in various fields such as
engineering, economics, and computer science. However, many problems that need
optimization have a large search space or complex constraints, making finding the optimal
solution challenging.

Metaheuristic methods are a class of optimization algorithms that are designed to solve
these types of problems. These algorithms are based on the idea of imitating natural or
artificial processes, such as the behavior of ants, bees, or genetic mutations, to explore the
search space efficiently and effectively. Metaheuristics have been applied to various
optimization problems, including engineering design, resource allocation, and scheduling.
With the rapid development of computer technology, metaheuristic methods have become
more popular and have proven to be effective in solving complex optimization problems.
Nowadays, optimization plays a crucial role in meeting human needs. Among the
applications of optimization in engineering sciences, we can mention its use in the design of
structures in civil engineering. The purpose is to reduce the weight of the structure and as a
result of that reduce the economic costs [1]. Unlike traditional mathematical methods, meta-
heuristic algorithms have the remarkable ability to discover the best possible solution
without relying on complex mathematical derivatives or needing a specific initial value.
They achieve this with simpler and more intuitive formulas, making them a powerful tool
for finding optimal solutions. Although the answer to these methods cannot be considered as
the absolute best solution to the problem, they can be obtained with a simpler process and in
a suitable and less time than mathematical methods [2]. Optimization algorithms are
extensively utilized in a diverse array of civil and structural engineering fields, playing a
pivotal role in enhancing efficiency and performance across various applications.

Among the research records in the field of structural optimization, there are cases such as
the Modified Adolescent Identity Search Algorithm (MAISA) for optimizing the weight of
steel frame structures and large-scale problems by Dehghani et al [3,4]. SeyedOskouei et al
introduced the improved Artificial Rabbits Optimization algorithm (I-ARO) and utilized it
for truss optimization [5]. The proposed algorithm HTC is a hybrid of two methods based on
Teaching—Learning-Based Optimization (TLBO) and Charged System Search (CSS) by
Dastan et al [6,7]. Optimizing the weight of truss structures using the presented method
HGPG, hybridizing the three methods of Gravity Search Algorithm (GSA), Particle Swarm
Optimization (PSO), and Gray Wolf Optimizer (GWO) algorithm by Biabani et al [8].
Optimizing the weight of truss structures using the CGPGC method, hybridizing GSA, PSO,
GWO, and Cellular Automation method (CA) by Biabani et al [9]. Optimal design of trusses
with mixed variables using Hybrid Algorithm for Sizing and Layout Optimization of Truss
Structures Combining Discrete PSO and Convex Approximation (IDPSO and MMA) by
Shojaee et al [10]. Shahrouzi and Taghavi developed the Modified Sine-Cosine Algorithm
(MSCA) for engineering problems [11]. Optimizing the size and geometry of truss structures
using the combination of DNA calculation algorithm and General Convex Approximation
(GCA) method by Darvishi and Shojaee [12]. The geometry and cross-sectional area of truss
members with a specific topology using the genetic algorithm by Wu and Chiu [13],
Hasanchabi and Erbatur [14], and Kaveh and Kalatjari [15]. Optimizing the size of the truss
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structure using the ECBO method by Kaveh et al [16]. Optimizing the weight of the
structure using colliding bodies algorithms was pointed out by Kaveh and Mahdavi [17].
Today, the utilization of metaheuristic algorithms in Structural Health Monitoring (SHM) is
another attractive application of these methods for solving real-world problems. For
example, Mahdavi et al employed metaheuristic algorithms for Optimal Senser Placement
(OSP) and impact identification [18-20]. Mahdavi and Kaveh used metaheuristic algorithms
for damage identification [21].

In recent years, size and geometry optimization of trusses has become an attractive issue.
Therefore, several techniques have been presented in this theme. It is important to note that
the formulation of the problem affects the optimum solution. Weak and unfit formulations
cause unreliable or uneconomical designs. A suitable formulation considers geometry
limitations and other constraints like displacement, stress, and Euler’s buckling constraint to
minimize weight and structural costs [1]. Size optimization means finding the optimal cross-
section of the truss members or frames in a skeletal structure or finding the appropriate
distribution of thickness in a shell structure so that the weight of the structure has the least
value and the stiffness of the structure satisfies all the constraints of the problem [22]. Also,
a structure can be optimized by reducing the number of nodes and elements or finding
suitable coordinates of nodes. In size optimization, the design variables are cross-sections of
members while in geometry optimization, the target is to find the optimal coordinate of
nodal points in the design domain in such a way that its performance is maximum. In this
research, the simultaneous optimization of the size and geometry of truss structures has been
done by using the HGPG algorithm. The cross-sectional areas of the members are
considered as discrete variables and the range of changes in the coordinates of the nodes in
different directions (X, Y, Z) are considered as continuous variables.

The paper provides a brief background of fundamental concepts underlying the HGPG
method in section 2. The third section offers a detailed review of the HGPG formulation and
the simultaneous optimization of truss structures' size and geometry. Section 4 presents the
measurement of the method's efficiency through numerical examples and a comprehensive
comparative analysis with other methodologies. Finally, the paper culminates in a thorough
discussion of the conclusions and their broader implications in the final section.

2. BASIC IDEAS

The HGPG algorithm is a combination of three metaheuristic methods: PSO, GSA, and
GWO, which were introduced by Eberhart and James Kennedy [23], Rashedi et al [24], and
Ali Mirjalili et al [25] respectively. This hybridization allows for the exploitation of the
advantages of each method while minimizing their limitations. A standout feature of this
method is its capacity to effectively balance exploration (global search) and exploitation
(local search) during the optimization process. This is achieved through the use of a stable
scheme that frequently adjusts the limit of each parameter.

Before introducing the HGPG optimization method, the article briefly outlines the core
principles behind the PSO, GSA, and GWO methods. This allows the reader to better
understand how the HGPG method integrates these three methods to enhance the
optimization process. The PSO algorithm is a population-based optimization method that
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uses the concept of swarm intelligence to search for the optimal solution. GSA, on the other
hand, is a gravity-based algorithm that mimics the behavior of celestial objects to perform
optimization. Lastly, GWO is inspired by the hunting behavior of grey wolves and uses a
hierarchical structure to perform optimization.

The combination of PSO, GSA, and GWO in the HGPG algorithm forms a highly robust
and efficient optimization framework. This approach allows for the optimization of both size
and geometry simultaneously in truss structures, which is a challenging problem in
engineering. Testing on standard optimization benchmarks has demonstrated that the HGPG
algorithm outperforms other optimization techniques in terms of accuracy and efficiency. Its
superior performance highlights the algorithm’s high potential for addressing complex
engineering optimization problems. The HGPG algorithm’s capacity to effectively manage
multiple constraints and deliver high-quality solutions positions it as a valuable tool for
advanced optimization applications.

3. THE PROPOSED METHOD: HYBRID GRAVITY SEARCH, PARTICLE
SWARM, AND GRAY WOLF ALGORITHM (HGPG)

The HGPG algorithm, introduced by Biabani et al in 2022 [8], incorporates the strengths and
mitigates the limitations of multiple optimization techniques by combining them for
enhanced performance. Recognizing that each algorithm offers distinct advantages and
trade-offs, hybridization or the use of advanced computational methods has become a
common approach to achieve superior outcomes. In the development of the HGPG
algorithm, the GSA (Gravitational Search Algorithm) serves as the foundational framework
due to its capability to leverage collective intelligence for locating optimal solutions within
both vector and multidimensional spaces. GSA operates by allowing particles to move in a
systematic and classical manner within a gravitational field, governed by their masses. The
force exerted between particles functions as a communication signal, guiding their
movements and ultimately determining their positions in the search space. This interaction
enables particles to intelligently explore and exploit the search space to converge on an
optimal solution. One of the key features of GSA is its consideration of both active and
passive gravitational mass for each particle, which allows for the measurement and
interaction of gravitational forces without reliance on problem-specific parameters. This
parameter-free nature makes it adaptable across a wide range of optimization problems. The
proposed HGPG algorithm builds upon this gravitational law while integrating the top three
search factors of the GWO (Grey Wolf Optimizer) and the velocity calculation mechanism
from PSO (Particle Swarm Optimization) to further enhance search performance.

The hybrid method has shown impressive results by optimizing both the weight and
geometry of truss structures at the same time, handling continuous and discrete variables
effectively. Additionally, the method demonstrates excellent convergence speed towards the
global optimum. In this section, a detailed explanation of the HGPG algorithm has been
presented and explores its application for the simultaneous optimization of weight and
geometry in truss structures.
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3.1 The HGPG Algorithm

One possible approach to determine Fif (t), which indicates the force transmitted from
mass i to mass j at time t and dimension d, is to utilize,
M pl (t) X Maj (t)

d d d
R O =60~ prer — (G O ) (1)

Rjj (t)

At time t, Rpower is a constant value of 0.1 and is a tiny value, while G(t) represents the
constant of gravity. Mpi(t) refers to the passive gravitational mass of i and M(t) refers to the
active gravitational mass of j. Rjj is the Euclidean distance between the two masses i and j in
the equation.

R (1) = Hxi ® . x; (t)H2 @)
The expression for the coefficient G(t) is given below:
G0~ ®

In this regard, max-iter represents the iterations’ maximum number and iter represents the
iterations’ current number. Employing this coefficient eliminates the necessity to modify the
fixed coefficients that are integral to the G(t) formula utilized in the GSA algorithm,
providing an additional benefit to the algorithm being proposed. Therefore, to calculate all
of the forces acting on the mass i at time t and at dimension d, and considering a random
coefficient in the interval [0,1], we can write,

RO =xNyrand; Ao (@)

In order to enhance the algorithm's ability to discover more optimal solutions, only the set
of top-performing members is permitted to impact the other members.

d d
(1) = X jenbest, j=i rand j Ky (t) (5)
The value of nbest is determined by using the following formula:

nbest = np(2 + (1 - iter/max —iter) * (Cp — 2)) / 100 (6)

where cp is a fixed number and np is the particle number. After determining nbest, the
acceleration of the objects in dimension d can be calculated using the following formula. As
per Newton's second law, the acceleration of an object is equal to the net force acting on the
object divided by the object's mass, and can be expressed as follows:

Y (1)
M i t)

o (= (7

Here, Mii(t) refers to the inertial mass of the i-th particle. The equation makes use of
stochastic coefficients to ensure that particle movement in the search space remains random.
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Mijj () =M i (1) = Mg () = M; () , i=12,..,N ®)

~ valug; (t) —worst(t)

m; (t) = )

best(t) — worst(t)

m; (t)

Mi(t)=
oslhmm

(10)

Based on the aforementioned points, the algorithm's efficiency can be enhanced by
computing the velocity in three steps, inspired by the third step of the PSO algorithm. The
first step involves calculating the velocity by summing the previous velocities with the
gravitational force, using the following equation:

v (¢ +1) = rand xv: (1) + & (1) (11)

Next, in the second step, the velocity calculated in the first step is updated using the
following equation:

Vi (t +1) = rand xv; () + G, xa(t) + (2—C, ) xS goest ~ i ® (12)

The value of the coefficient Ck is obtained by using the following equation:

nen
C, =2-0.25x IogT (13)

Furthermore, the initial value of ncn is set to 1 and added to the initial population at all
times. Finally, the PSO method is used with the velocity calculated in the previous step.

d d d d d d

where, #, “Land ?2 are random variables in the range [0,1] and C1 and C2 are constant
coefficients. In addition, since the GWO algorithm considers the effect of the top 3 particles
to find the best solution, X%mean-gbe is used instead of Xpest in the PSO formula, to use this
point in the proposed algorithm in the velocity part.

d d

d d
Xmean—gbest - (Xalpha + Xpeta * Xdelta) /3 (15)

where, X%ipha, X%heta, and X%eia represent the top 3 particles position in the algorithm.
Therefore, the new position of each particle can be calculated as the sum of the calculated
values using vector summation.
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xid (t+1) = xid (t)+vid (t+2) (16)

The algorithm has been upgraded to get rid of the underperforming particle and replace it
with a better one. To make this happen, a random value is generated after identifying the
weakest particle, known as the gamma particle. If the randomly generated value is lower
than a computed value based on the current iteration and the maximum number of iterations,
the gamma particle's value is replaced with a new one. Otherwise, it is substituted with the
average value of the X%pha, X%beta, and X%uerra particles. The HGPG method is summarized in
pseudocode 1.

Pseudocode 1: The HGPG algorithm

1: Initialize particles with random solutions
2. Evaluate the fitness of each particle
3. Set the initial best positions of each particle and the global best position found by any particle
4. Repeat until the stopping criteria are satisfied:
5: Calculate and update the particle’s mass and particle’s force.
6: Determine the superior alpha, beta, and delta particles
7. Calculate and update the velocity of particles.
8: Update the position of particles.
9: Evaluate the fitness of each particle
10: Update the best positions if the current solution is better
11: Update the global best position if a better solution is found

12: Return the best solution found

3.2 Simultaneously Optimization of Discrete and Continuous Variables

In the optimization of truss structures for size, the objective is to minimize the weight of
the structure by taking into account the cross-sectional area of the truss members as design
variables, while ensuring that the problem's constraints are met. In some cases, various
aspects of the cross-section are considered as design variables. For instance, when
addressing column buckling, the design variables include the cross-sectional area and
moment of inertia of the cross-section. It is crucial to note that these cross-sectional areas are
typically treated as discrete variables, reflecting the fact that, in practical design scenarios,
truss structures are constructed using standard steel profiles available in the market. These
profiles come in a predefined, discrete set of cross-sectional areas, from which the most
suitable ones must be selected. Consequently, the size optimization process focuses on
selecting the best possible combination of these predefined profiles to achieve the desired
structural performance with minimal weight.

Geometric optimization of truss structures involves minimizing the weight of truss
structures while working within given constraints, using the coordinates of the truss nodes as
design variables. In this form of optimization, the node coordinates are treated as continuous
variables since they can take any value from a range of real numbers, allowing for flexibility
in adjusting the positioning of nodes and consequently altering the lengths of truss elements.
Through this process, an efficient and lightweight truss structure with an ideal configuration
can be achieved. In optimization, the geometry of the design set is not fixed and is usually
considered as a continuous variable, and only the boundaries of the design domain can be
changed. In this study, both the cross-sectional areas of the truss members (as discrete
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variables) and the node coordinates (as continuous variables) are considered for weight
optimization.

To simultaneously optimize the weight and size of truss structures, the following steps
are taken:

Step 1: Define the list of available profiles for cross-sections and set the index number of
the profile list for the lower and upper bound of cross-sections variables. Continuous

variables are applied according to the normal procedure.

Step 2: Separate cross-sectional variables from geometry variables.

Step 3: Round discrete variables to the nearest integer number and replace it with
previous values.

Step 4: Choose an appropriate cross-section from the profile list according to its index
number.

Step 5: Evaluate the fitness using discrete variables and continuous geometry variables.

Note that all the above steps were applied in the objective function, except step 1.

4. NUMERICAL EXAMPLES

In this section, four benchmark examples of 15, 18, 25, and 47-bar trusses have been
discussed and the results of weight and geometry optimization using the HGPG method have
been compared with those obtained from other similar methods. In the following examples,
the standard deviations (Std) are calculated from 30 independent runs. The control
parameters are considered in Table 1.

Table 1: Controlling parameters

Parameter Description Value
R power Power of R coefficient 0.01
W Initial weight 0.9
C1, C2 Learning coefficient 2
Number of Run 30

4.1. Fifteen-bar Truss

The study's first example involves analyzing a 15-bar truss that's under a concentrated load
of P= -10 ksi applied at node 8 (see Figure 1). The material density is p= 0.1 Ib/in% and the
modulus of elasticity is E= 10000 ksi. Cross-sections are chosen from a range of available
profiles in Table 2, with allowable tensional and compressive stress limited to 25 ksi. For more
design details, refer to Table 2. The HGPG method is compared with similar algorithms in Table
3. Stress values for each truss element are presented in Table 4, and Figure 2 illustrates that
stress ratios for all elements are within the allowable limit. The initial and optimized truss
geometries are shown in Figure 3, while the convergence curve in Figure 4 depicts the HGPG
method's convergence rate. Furthermore, Figure 5 provides insights from 30 independent runs,
showcasing average weight, worst weight, and standard deviation at 82.4, 87.76, and 2.8 Ib,
respectively.
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Figure 1: Initial Geometry and node numbers of the 15-bar truss

Table 2: The primary data of the 15-bar truss

. Node Fx (Kips) Fy (Kips) Fz (Kips)
Loading data 8 0 10 0
Size variables Geometry variables
Design variables  Ar; Az; Asz; As; As; Ag; X2= X6; X3=X7; Y2;Y3,Y4;Y6;Y7;Y8

A7; As; Ag; Axo; Aug;
Auz; Aiz; Awg; Ass

Stress constraints
(o)i <25 Ksi; i=1,2,...,15
|(o¢)i| <25 Ksi; i=1,.2,...,15

Side constraints of geometry variables
100 in <x2 <140 in

220 in <x3 <260 in
100in<y2<140in

100 in <y3<140in

50in<ys4<90in

-20in <y <20 in

-20in <y7<20in

20 in <ys <60 in

Constraint data

List of the Aie S={0.111, 0.141, 0.174, 0.22, 0.27, 0.287, 0.347, 0.44, 0.539, 0.954, 1.081, 1.174, 1.333,
available 1.488, 1.764, 2.142, 2.697, 2.8, 3.131, 3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 8.525, 9.3, 10.85,
profiles 13.33, 14.29, 17.17, 19.18}in?

Table 2: Comparison of optimized designs for the 15-bar truss

Design Improved CPSO DNA-GCA
variables ARSAGA [26] GA [27] 28] [12] Present work

A1 0.954 1.081 1.174 1.081 0.954

Az 1.081 0.539 0.539 0.539 0.539

As 0.44 0.287 0.347 0.27 0.287

Size variables A4 1.174 0.954 0.954 0.954 1.333
(in?) As 1.488 0.954 0.954 0.954 0.539

As 0.27 0.22 0.141 0.22 0.174

Ar 0.27 0.111 0.141 0.111 0.22

As 0.347 0.111 0.111 0.111 0.111

Ao 0.22 0.287 1.174 0.27 0.27
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Ao 0.44 0.22 0.141 0.287 0.539
Au 0.22 0.44 0.44 0.44 0.22
A 0.44 0.44 0.44 0.287 0.111
Ass 0.347 0.111 0.141 0.141 0.44
A 0.27 0.22 0.141 0.27 0.22
Ass 0.22 0.347 0.347 0.27 0.287
X2 118.346 133.612 102.287 123.529 103.423
X3 225.209 234.752 240.505 239.110 259.743
Y2 119.046 100.449 112.584 123.791 131.452
Geometry V3 105.086 104.738 108.043 115.211 117.221
variables (in)  ya 63.375 73.762 57.795 72.968 53.347
Y6 -20 -10.067 -6.430 -8.153 8.568
y7 -20 -1.339 -1.801 3.896 16.659
Vs 57.722 50.402 57.799 42.603 53.328
Results Woest (1b) 104.573 79.82 77.615 79.807 77.604
Analysis N/A 8000 4500 N/A 6980
Table 3: The stress value of the 15-bar truss
Member Stress (1b/in?) Member Stress (1b/in?)
1 22020.10 9 21915.66
2 24998.75 10 24873.83
3 24372.13 11 24998.75
4 -22582.72 12 2217157
5 -22206.45 13 -24706.26
6 -24908.52 14 21939.49
7 -24949.17 15 -21887.95
8 14163.02
l po=m—=@mg === o -0-———=—- =P ————
° ® o ° ° o o
0.8
=
T
S 06
p o
o
B 04
0.2
0 : : : : : : - : - : - : - :
0 2 4 6 8 10 12 14

Element number
Figure 2: The stress ratio of the 15-bar truss in the optimal solution
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Figure 3: Initial and optimum geometry of the 15-bar truss
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Figure 4: The convergence curve of the 15-bar truss
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Figure 5: The optimal weight of the 15-bar truss in each independent run
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4.2. Eighteen-bar Truss

The 18-bar truss with 12 variables has been illustrated in Figure 6. The material density is
p= 0.1 Ib/in® and the module of elasticity is E= 10000 ksi. The truss elements are
categorized into 4 groups and their cross-sections are selected from the set of Ai € S= {2.00,
2.25, ..., 21.50, 21.75}in% A concentrated load P= -20 ksi was applied at nodes 1, 2, 4, 6,
and 8. The allowable tensional and compressive stress is limited to 20 Ksi, and the Euler
buckling stress constraints should be considered. Other design information is summarized in
Table 5. Upon reviewing Table 6 data, the HGPG method optimized the 18-bar truss by
approximately 5.6 Ib, outperforming the ABC algorithm.The stress value of each element is
presented in Table 7, and Figure 7 depicts the stress ratios. The initial and optimized
geometry of the 18-bar is illustrated in Figure 8, while the convergence curve of the best run
is presented in Figure 9. Additionally, Figure 10 displays the optimal outcome of the 18-bar
in each independent run. The average weight, the worst weight, and the standard deviation
were calculated to be 4651.65 Ibs, 5058.32 Ibs, and 107.62 Ibs, respectively.

P I4
12 (6) 8
13 1 9 250 in
14 10
(7)
! 250 in I 250 in I 250 in } 250 in I

Figure 6: Initial Geometry and node numbers of the 18-bar truss

Table 5: The primary data of the 18-bar truss

Node Fx (kips) Fy (kips) Fz (kips)
1 0 -20 0
. 2 0 -20 0
Loading data 4 0 20 0
6 0 -20 0
8 0 -20 0
Size variables Geometry variables
A1= Ag= Ag= A12= Asg; A= X3; Y3; Xs; Ys; X7; Y7,
Design variables As= A10= Aus= Ausg; Az= Ar= X9; Y9
A= Ass;
As= Ag= A13= A1z
Stress constraints
(o1)i <20 Ksi; i=1,2,...,18
|(o¢)i] <20 Ksi; i=1,2,...,18
Euler buckling stress constraints
Constraint data |(50)i| < aAi E/L?, 0=4; i=1,2,...,18

Side constraints of geometry variables
7751in<x3<12251in
-225in<y3<245in
525in<x5<975in
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-225in<y5<245in
275in<x7<725in
-225in<y7<245in
25in<x9<4751in
-225in<y9<245in
List of the available profiles  Aie $={2.00,2.25, ..., 21.50, 21.75}in?
Table 4: Comparison of optimized designs for the 18-bar truss
. Rajeev and
Design Krishnamoorthy Yang CPSO D-ICDE [31] ABC[32] Present work
variables 129] [30] [28]
si AL 125 12.61 12 13 125 12
vari:EIZt)eIes Az 16.25 18.1 17.25 175 17.75 17.75
(in?) Az 8 5.47 6.25 6.5 5.75 55
Aq 4 3.54 4.75 3 3.75 4.5
X3 891.9 9145 902914 914.06 912.997 909.864
y3 145.3 183 174.72 183.46 183.681 414.602
Geometr Xs 610.6 647 632.713 640.53 642.714 642.853
variableg ys 118.2 147.4 141.296 133.74 143.892 203.123
(in) X7 385.4 4142  407.132 406.12 411.692 183.984
y7 725 100.4 85.933 92.63 97.148 148.806
X9 184.4 200 197.672 196.69 200.909 96.533
Yo 234 31.9 19.809 37.06 30.219 22.228
Results Whest (10) 4616.8 4552.8 4561.131 4554.29 4537.064 4531.467
Analysis N/A N/A 4500 8025 2700 9975
Table 5: The stress value of the 18-bar truss
Member Stress (Ib/in?) Member Stress (1b/in?)
1 8587.17 10 -12948.26
2 -5913.75 11 -5970.43
3 -6154.17 12 19999.91
4 10862.77 13 -1023.80
5 10075.22 14 -14130.17
6 -9788.61 15 -3129.38
7 -9878.43 16 20008.23
8 17646.57 17 20000.00
9 3342.32 18 -17002.31
] per—@e——=—- X el DO SRy D2 B X J
[
208 ¢ ®
§ 0.6
2 . le 0
504
n ® ®
0.2 °®
0 f } }
0 5 10 15
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Figure 7: The stress ratio of the 18-bar truss in the optimal solution
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Figure 10: The optimal weight of the 18-bar truss in each independent run
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4.3. Twenty-five-bar Truss

The 25-bar truss with 8 cross-sectional variables and 5 geometrical variables is considered
for the third example. The geometry and the node numbers are shown in Figure 11, and the nodal
coordinates are defined in Table 8. The 25-bar truss has a 0.89 cm displacement constraint of all
nodes in all directions. The grouped members are in Table 9. The allowable stress is 275.8 Mpa
for tension and compression stresses. The material density and the module of elasticity are 2720
kg/m® and 68.95 Gpa, respectively. Other necessary data for design are summarized in Table 10.
Table 11 exhibits the comparison of the HGPG method results with similar approaches. The
stress of each member and displacement of each node obtained from the best design are shown
in Table 12 and Table 13, respectively. The stress ratios are shown in Figure 12. The stress ratio
has decreased due to displacement constraints. The initial and optimized geometry of the 25-bar
truss and the convergence curve of the best run has been shown in Figure 13 and Figure 14,
respectively. the average weight came in at 55.76 Ib, the worst weight was 57.41 Ib, and the
standard deviation was 0.806 Ib. Figure 15 demonstrates the optimal weight of the 25-bar truss
in each independent run.

Figure 11: Initial Geometry and node numbers of the 25-bar truss

Table 6: The nodal coordinates of the 25-bar truss

Node x(cm) y(cm) z(cm)
1 -95.25 0 508
2 95.25 0 508
3 -95.25 95.25 254
4 95.25 95.25 254
5 95.25 -95.25 254
6 -95.25 -95.25 254
7 -254 254 0

8 254 254 0

9 254 -254 0
10 -254 -254 0
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Table 7: The grouping of truss elements for the 25-bar truss

Group Members (nodes)

A1 1(1,2)

Az 2(1,4),3(2,3),4(1,5),5(2,6)

As 6(2,5),7(2,4),8(1,3),9(1,6)

As 10(3,6),11(4,5)

As 12(3,4),13(5,6)

As 14(3,10),15(6,7),16(4,9),17(5,8)
A7 18(3,8),19(4,7),20(6,9),21(5,10)
As 22(3,7),23(4,8),24(5,9),25(6,10)

Table 10: The primary data of the 25-bar truss

Node Fx (kN) Fy (kN)

1 4.454 -44.537
Loading data 2 0 -44.537

3 2.227 0

6 2.672 0

Fz (kN)

-44.537
-44.537
0
0

Design variables

Size variables
A1 Az; As; Ag; As;
As; A7; As

Geometry variables
X4= X5=- X3=- Xe6;
Y4=Y3=- Y5=- Y6,
Z24= 73= 75= 76 ,
Xg= X9=- X7=- X10,

Constraint data

Y8= Y7=- Y9=- Y10
Stress constraints
(o1)i <275.8 Mpa; i=1,2,...,25
[(6c)i| <275.8 Mpa, i=1,2,...,25
Displacement constraints
|Ai| < 0.89 cmy; i=1,2,...,6

Side constraints of geometry variables
50.8cm <x4<152.4cm

101.6cm <ys4<203.2cm

228.6cm < z4<330.2cm

101.6cm < xg < 203.2cm

254cm <ys < 355.6cm

List of the available profiles  Aie S={0.6451 (I=1,2,...,26), 18.064, 19.355, 20.645, 21.935}cm? i=1,2,...,25
Table 8: Comparison of optimized designs for the 25-bar truss
. Kaveh and .
e C\r’]\é‘:,va%dﬂ Ka[lla;j]ari RZT?’E]H CPSO [28] D-ICDE[31] Present work
AL 0.645 0.645 0.645 1.935 0.645 0.645
A 1.29 0.645 0.645 0.645 0.645 0.645
As 7.097 7.097 7.097 6.45 5.805 6.45
Size variables  As 1.29 0.645 0.645 0.645 0.645 0.645
(cm?) As 1.935 0.645 0.645 0.645 0.645 0.645
As 0.645 0.645 0.645 0.645 0.645 0.645
A 1.29 0.645 1.29 1.29 0.645 0.645
As 5.806 6.452 5.16 5.805 6.45 6.45
Xa 104.318 92.024 83.944 85.084 93.548 94.661
?/gflg‘tﬁgg’ ya 135.814 148.742 136.058  158.429 148.666 132.172
(cm) % 316.484 293.599 329.969 290.817 311.582 327.746
Xs 129.032 118.008 111.208 101.735 124.993 126.844
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Vs 333.959 324.993 347.569 339.522 347.320 333.469
Results Whest (kg) 61.83 56.29 5453 56.047 53.869 53.873
Analysis N/A N/A 10000 4500 6000 8790
Table 9: The stress value of the 25-bar truss
Member Stress (kg/cm?) Member Stress (kg/cm?) Member Stress (kg/cm?)
1 265.97 10 4000.63 19 6756.20
2 -2219.10 11 5306.34 20 -13216.68
3 3456.02 12 -1499.89 21 -1356.82
4 -8541.76 13 -2269.69 22 2622.83
5 -3518.82 14 -5055.08 23 850.42
6 -9851.61 15 4574.14 24 -10132.80
7 1294.04 16 -5461.40 25 -8407.42
8 1726.53 17 4086.20
9 -9468.83 18 -4495.39
Table 10: The nodal displacements of the 25-bar truss
Node AX (cm) Ay (cm) Az (cm)
1 0.883 -0.890 -0.429
2 0.890 -0.881 -0.422
3 0.730 -0.443 -0.171
4 0.688 -0.414 -0.131
5 0.710 -0.617 -0.219
6 0.772 -0.596 -0.264
7 0 0 0
8 0 0 0
9 0 0 0
10 0 0 0
T S
0.8
2
T 0.6
[%2]
o )
=04
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Figure 12: The stress ratio of the 25-bar truss in the optimal solution
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Figure 14: The convergence curve of the 25-bar truss
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Figure 15: The optimal weight of the 25-bar truss in each independent run

4.4. Forty-seven-bar Truss

The last numerical example is the 47-bar truss (Figure 16) with 44 size and geometry
variables. Truss elements are categorized into 27 groups. Table 14 exhibits the available
profiles and 17 other geometric variables. The tensional stress is limited to 20 ksi and the
compressive stress is limited to min {15, aAj E/Li?} ksi in which a=3.96. The material
density is p= 0.3 Ib/in® and the module of elasticity is E= 30000 ksi. All primary information
is summarized in Table 14. The proposed method is compared with other similar methods in
Table 15. The HGPG algorithm optimized the 47-bar truss about 7.72 Ib, compared to the
DNA-GCA algorithm. Similar to the previous examples, for a better understanding of the
obtained stresses for each element (Table 16), the stress ratios are shown in Figure 17. The
initial and optimized geometry of the 47-bar truss and the convergence curve of the best run
has been shown in Figure 18 and Figure 19, respectively. According to 30 independent runs,
the average weight, the worst weight, and the standard deviation were 2154.97, 2766.53, and
239.17 Ib, respectively. Figure 20 shows the optimal result of the 47-bar truss in each
independent run.
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Figure 16: Initial Geometry and node numbers of the 47-bar truss

Table 14: The primary data of the 47-bar truss

Node Fx (kips) Fy (kips) F2 (kips)
Loading data 17 6 -14 0
22 6 -14 0

Size variables
Az= A1, As=A2; As= As; A7; As= Ag; Ao; A= Aug;
Design variables Aus= Aiz; Ais= Ae; A1s= Ar7; A2o= Arg; A= Az1; Axs= Azs;
A26= Azs; Azr; Azs; Aso= Azg; Az1= Aszz; Asz; Ass= Azs; Asze= As7; Ass; A= Azg; Aa= Az,
Au3;Ass= Ada; Ase= Asr
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Geometry variables
X2=-X1; X4=-X3; Y4=Y3; X6=-X5, Y6=Y5, Xg=-X7, Y8=Y7,
X10=-X9; Y10=Y9, X12=-X11, Y12=Y11; X14=-X13; Y14=Y13;
X20=-X19; Y20=Y19; X21=-X18; Y21=Y18
Stress constraints
(o1)i <20 ksi; i=1,2,...,47
|(oc)il < 15 ksi; i=1,2,...,47
Euler buckling stress constraints
|(50)i] < aAi E/L?, 0=3.96; i=1,2,...47
Side constraints of geometry variables
0<x2<150in
0<x4<150in
0<ys<240in
0<x6<1501in
. 120 in <y <360 in
Constraint data 0<xns 1ySO o
240 in<ys<420in
0<x10<75in
360 in < y10 <480 in
0<x12<75in
420 in <y12 <540 in
0<x14<75in
480 in < y14 <600 in
0<x20<75in
540 in < y20 < 660 in
0<x2<150in
540 in < y21 <660 in
List of the available Aie $={0.1,0.2,0.3, ..., 5.0}in?
profiles
Table 11: Comparison of optimized designs for the 47-bar truss
Design Hasancebi and Salajegheh and SCPSO DNA- ABC Present
variables Erbatur [35]  Vanderplaats [36] [28] GCA [12] [32] work
As 2.5 2.61 25 2.7 24 3.8
Aq 2.2 2.56 25 25 2.2 2
As 0.7 0.69 0.8 0.7 1.1 0.4
Az 0.1 0.47 0.1 0.1 0.1 5
As 1.3 0.8 0.7 0.9 1.2 15
Ao 1.3 1.13 1.4 11 1.3 1.4
. A1 1.8 1.71 1.7 18 1.7 2
e A 05 0.7 0.8 0.7 0.6 0.4
(in?) Ais 0.8 1.09 0.9 0.9 0.8 0.7
Asg 1.2 1.34 1.3 1.3 1.6 2
Az 0.4 0.36 0.3 0.3 0.3 1.2
A2 1.2 0.97 0.9 1.1 0.9 0.5
A2 0.9 1 1 1 1.2 1.6
Az 1 1.03 11 0.9 1 1.7
Az 3.6 0.88 5 0.8 1 11
Azs 0.1 0.55 0.1 0.1 0.6 0.1
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Aso 2.4 2.59 25 2.7 2.8 3.2
Ast 1.1 0.84 1 0.8 0.4 0.4
Ass 0.1 0.25 0.1 0.1 0.1 0.1
Ass 2.7 2.86 2.8 3 2.9 3.1
Ass 0.8 0.92 0.9 0.9 15 0.5
Asg 0.1 0.67 0.1 0.1 0.6 0.2
Ao 2.8 3.06 3 3.2 3.1 3.2
A 1.3 1.04 1 1 0.9 0.8
A 0.2 0.1 0.1 0.1 0.1 0.1
Ass 3 3.13 3.2 3.3 3.3 3.2
Ass 1.2 1.12 1.2 1.2 0.8 0.4
X2 114 107.76 101.339 100.972 103.6063 120.840
Xa 97 89.15 85.911 80.477 81.5008 88.893
Ya 125 137.98 135965  136.870  143.0525 160.416
X6 76 66.75 74.797 64.391 67.0169 58.621
Y6 261 254.47 237.745  247.049  252.8466  289.544
X8 69 57.38 64.311 55.259 545203 37.959
Vs 316 342.16 321.342  338.453  374.0126  397.740
Geometry X10 56 49.85 53.335 48.733 39.8226 31.208
variables (i) Y*° 414 417.17 414302  409.738  443.9461  444.700
X12 50 44.66 46.028 43.474 30.9474 26.371
Y12 463 475.35 489.921  472.148  491.9941  473.438
X14 54 41.09 41.835 44.835 36.7597 39.436
V14 524 513.15 522.416 512.190 510.000 528.233
X20 1 17.9 1 3.842 17.6763 31.749
Y20 587 597.92 598.391 591.145 598.8911 595.814
Xa1 99 93.54 97.87 84.504 77.6661 88.774
yo1 631 623.94 624.055  630.347 619.89 603.940
Results Whest (Ib) 1925.79 1900 1864.1 1860.161 1871.843  1852.446
Analysis N/A N/A 25000 N/A 2850 6940
Table 12: The stress value of the 47-bar truss
Member Stress (Ib/in?) Member Stress (Ib/in?) Member Stress (Ib/in?)
1 4074.45 17 -14250.18 33 1664.13
2 5619.94 18 -13485.29 34 6118.15
3 -11577.62 19 -3002.18 35 -14816.69
4 -14793.83 20 -1063.73 36 -2288.82
5 3299.14 21 -8027.09 37 -1767.88
6 -2646.65 22 -12405.51 38 606.69
7 297.15 23 12207.38 39 5414.07
8 4023.70 24 18865.95 40 -14308.52
9 -14601.23 25 11495.32 41 -2272.12
10 -11945.39 26 17765.49 42 172352
11 -14301.81 27 18514.38 43 5887.90
12 -14742.40 28 2459.21 44 5004.76
13 18872.94 29 5341.69 45 -13942.00
14 -7188.20 30 -14178.08 46 348.56
15 -6814.95 31 4676.41 47 -149.44
16 15840.40 32 -4726.63
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Figure 17: The stress ratio of the 47-bar truss in the optimal solution
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Figure 18: Initial and optimum geometry of the 47-bar truss
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Figure 20: The optimal weight of the 47-bar truss in each independent run

5. CONCLUSIONS

In this study, the HGPG algorithm was utilized for the size and geometry optimization of
truss structures. The research aimed to demonstrate the effectiveness of the HGPG algorithm
in addressing combined size-geometry optimization problems. The algorithm takes into
account continuous design variables for the location of joints and discrete design variables
for cross-sectional areas. The main goal is to determine the optimal weight of the truss
structures while satisfying local buckling, stress, and displacement constraints. The study
employs a penalty function to convert a constrained problem into an unconstrained one. The
HGPG was applied to four 2D and 3D benchmark examples. Comparative analysis with
other optimization algorithms revealed that the HGPG is a highly effective method for such
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engineering optimization problems, capable of reducing analysis costs while achieving
lighter designs.
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14.
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